วันจันทร์ที่ 2 กุมภาพันธ์ พ.ศ. 2558

ความน่าจะเป็น

ความรู้เดิมที่ผู้เรียนต้องทราบ 1. ข้อความคาดการณ์ เป็นกระบวนการที่ใช้การสังเกตหรือการทดลองหลายๆครั้ง แล้ว รวบรวมข้อมูลเพื่อหาแบบรูปที่จะน าไปสู่ข้อสรุป ซึ่งเชื่อว่ามีความเป็นไปได้มากที่สุด แต่ยังไม่ได้พิสูจน์ ว่าเป็นจริง 2. อัตราส่วนและร้อยละ ( Ratio and Percent ) อัตราส่วน คือ การเปรียบเทียบจ านวนสิ่งของชนิดเดียวกันตั้งแต่สองจ านวนขึ้นไป เช่น การแข่งขันฟุตบอลระหว่างทีมไทยกับทีมเวียดนาม คาดว่าไทยจะชนะ 5 ต่อ 2 ร้อยละ คือ เศษส่วน หรืออัตราส่วนที่มีส่วนเป็น 100 อาจแทนด้วยค าว่า เปอร์เซ็นต์ (%) เช่น พรุ่งนี้จะมีฝนตก ของพื้นที่ คาดว่านักท่องเที่ยวแถบอันดามันลดลง ความน่าจะเป็น ( Probability ) ในชีวิตประจ าวันเรามักจะได้ยินค าพูดที่เกี่ยวกับการคาดคะเน การท านาย โอกาส หรือความ เป็นไปได้ที่จะเกิดเหตุการณ์ที่กล่าวถึง แต่ไม่สามารถบอกได้แน่ชัดว่าเหตุการณ์เหล่านั้นจะเกิดขึ้น หรือไม่ จนกว่าจะถึงเวลาที่ก าหนด จ านวนจ านวนหนึ่งที่บ่งบอกถึงโอกาสมากน้อยที่จะเกิดแต่ละเหตุกาณ์นั้น ในทางคณิตศาสตร์ เรียกจำนวนนั้นว่า ความน่าจะเป็นของเหตุการณ์ การหาความน่าจะเป็นของเหตุการณ์ 

อัตราส่วนตรีโกณมิต

คำว่า “ตรีโกณมิติ” ตรงกับคำ ภาษาอังกฤษ “Trigonometry” หมายถึง การวัด รูปสามเหลี่ยมได้มีการนำความรู้วิชาตรีโกณมิติไปใช้ในการหาระยะทาง พื้นที่ มุม และทิศทางที่ยากแก่การวัดโดยตรง เช่น การหาความสูงของภูเขา การหาความกว้างของแม่น้ำ เป็นต้น              จากรูปสามเหลี่ยมมุมฉาก ABC ที่มีมุม C เป็นมุมฉาก

เมื่อพิจารณามุม A
BC เรียกว่า ด้านตรงข้ามมุม A ยาว a หน่วย
CA เรียกว่า ด้านประชิดมุม  A ยาว b หน่วย
AB เรียกว่า ด้านตรงข้ามมุมฉาก ยาว c หน่วย

เมื่อพิจารณามุม B
AC เรียกว่า ด้านตรงข้ามมุม B ยาว b หน่วย
CB เรียกว่า ด้านประชิดมุม B ยาว a หน่วย
BA เรียกว่า ด้านตรงข้ามมุมฉาก ยาว c หน่วย

เลขยกกำลัง

เลขยกกำลัง ใช้พื้นฐานเรื่องการคูณกันของจำนวน แล้วนำมาเขียนให้อยู่ในรูปเลขยกกำลัง ในบทนี้จะได้เรียนเรื่องเลขยกกำลัง การบวกลบคูณและหารเลขยกกำลัง สูตรต่างๆ ของเลขยกกำลัง การถอดรากที่ n ในระบบจำนวนจริง การหารากที่สองของจำนวนอตรรกยะ และการแก้สมการที่ติดเครื่องหมายราก เรื่องเลขยกกำลังเป็นพื้นฐานสำคัญของเรื่อง เอกซ์โพเนนเชียล และ ลอการิทึม

จำนวนจริง

จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
                   I = {1,2,3…}
- เซตของจำนวนเต็มลบ  เขียนแทนด้วย  I
- เซตของจำนวนเต็ม เขียนแทนด้วย I
                   I = { …,-3,-2,-1,0,1,2,3…}
- เซตของจำนวนตรรกยะ : เซตของจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วน      โดยที่ a,b เป็นจำนวนเต็ม  และ b = 0
 ซตของจำนวนอตรรกยะ : จำนวนที่ไม่ใช่จำนวนตรรยะ ซึ่งไม่สมารถเขียนในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ แต่สามารถเขียนได้ในรูปทศนิยมไม่ซ้ำ และสามารถกำหนดค่าโดยประมาณได้
         ตัวอย่างจำนวนอตรรกยะ
                   = 1.4142135…   มีค่าประมาณ    1.414
                   = 1.4422495…   มีค่าประมาณ    1.442
                   = -0.8660254…  มีค่าประมาณ    -0.866
                   = 3.14159265…  มีค่าประมาณ    3.1416



การใช้เหตุผล

การให้เหตุผลทางคณิตศาสตร์ที่สำคัญมีอยู่ 2 วิธี คือ
         3.1การให้เหตุผลแบบอุปนัย (Inductive Reasoning) เป็นการสรุปผลในการค้นหาความจริงจากการสังเกต  หรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป ซึ่งข้อสรุปที่ไม่จำเป็นต้องถูกต้องทุกครั้ง
         3.2การให้เหตุผลแบบนิรนัย (Deductive Reasoning ) เป็นการนำสิ่งที่ยอมรับว่าเป็นจริงมาประกอบเพื่อนำไปสู่ข้อสรุปจากสิ่งที่ยอมรับแล้ว
         - การสรุปที่สมเหตุสมผล (Valid) คือ ข้ออ้างหรือเหตุที่เป็นจริงเป็นผลให้ได้ข้อสรุปที่ถูกต้อง
         - การสรุปผลที่ไม่สมเหตุสมผล (Invalid) คือ ข้ออ้างหรือเหตุเป็นจริง แต่ไม่เป็นผลให้ไดข้อสรุปที่ถูกต้อง
          การตรวจสอบความสมเหตุสมผลนั้นสมารถตรวจสอบได้หลายวิธี  แต่วิธีการหนึ่งที่นิยม คือ การวาดแผนภาพของเวนน์  ออยเลอร์  เป็นการวาดแผนภาพตามสวมมิติฐานที่เป็นไปได้  แล้วจึงพิจารณาว่าแผนภาพแต่ละกรณีแสดงผลการสรุปตามที่สรุปไว้หรือไม่
-                   ถ้าแผนภาพที่วาดกรณีที่เป็นไปได้ทุกกรณีแสดงผลตามที่กำหนดจึงกล่าวได้ว่า การสรุปผลนันสมเหตุสมผล
-                   ถ้าแผนภาพที่วาดกรณีที่เป็นไปได้ทุกกรณีไม่แสดงผลตามที่สรุปไว้ จึงกล่าวได้ว่า การสรุปผลนั้นไม่สมเหตุสมผล


เซต

เซต (อังกฤษ: set) ในทางคณิตศาสตร์นั้น อาจมองได้ว่าเป็นการรวบรวมกลุ่มวัตถุต่างๆ ไว้รวมกันทั้งชุด แม้ว่าความคิดนี้จะดูง่ายๆ แต่เซตเป็นแนวคิดที่เป็นรากฐานสำคัญที่สุดอย่างหนึ่งของคณิตศาสตร์สมัยใหม่ การศึกษาโครงสร้างเซตที่เป็นไปได้ ทฤษฎีเซตมีความสำคัญและได้รับความสนใจอย่างมากและกำลังดำเนินไปอย่างต่อเนื่อง มันถูกสร้างขึ้นมาตอนปลายคริสต์ศตวรรษที่ 19 ตอนนี้ทฤษฎีเซตเป็นส่วนที่ขาดไม่ได้ในการศึกษาคณิตศาสตร์ และถูกจัดไว้ในระบบการศึกษาตั้งแต่ระดับประถมศึกษาในหลายประเทศ ทฤษฎีเซตเป็นรากฐานของคณิตศาสตร์เกือบทุกแขนงซึ่งสามารถนำไปประยุกต์ใช้ได้
ตอนเริ่มแรกของ Beiträge zur Begründung der transfiniten Mengenlehre โดย เกออร์ก คันทอร์ (Georg Cantor) ผู้สร้างทฤษฎีเซตคนสำคัญ ให้นิยามของเซตเซตหนึ่งดังต่อไปนี้:[1]


โดย "เซต" เซตหนึ่ง เราหมายถึงการสะสมรวบรวมใดๆ ที่ให้ชื่อว่า M เข้าเป็นหน่วยเดียวกันทั้งหมด ของวัตถุที่ให้ชื่อว่า m ที่แตกต่างกัน (ซึ่งเรียกว่า "สมาชิก" ของ M) ตามความเข้าใจของเรา หรือตามความคิดของเรา
ดังนั้นสมาชิกของเซตเซตหนึ่งจึงสามารถเป็นอะไรก็ได้ เช่น ตัวเลข ผู้คน ตัวอักษร หรือเป็นเซตของเซตอื่น เป็นต้น เซตนิยมเขียนแทนด้วยอักษรตัวใหญ่ เช่น A, B, C ฯลฯ ตามธรรมเนียมปฏิบัติ ในประโยคที่ว่า เซต A และ B เท่ากัน หมายความว่า ทั้งเซต A และเซต B มีสมาชิกทั้งหมดเหมือนกัน (ตัวอย่างเช่น สมาชิกทุกตัวที่อยู่ในเซต A ก็ต้องเป็นสมาชิกของเซต B ด้วย เขียนแทนด้วย A = B และในทางกลับกันก็เป็นเช่นเดียวกัน เขียนแทนด้วย B = A)
สมาชิกทุกตัวของเซตเซตหนึ่งต้องไม่ซ้ำกัน และจะไม่มีสมาชิกสองตัวใดในเซตเดียวกันที่เหมือนกันทุกประการ ซึ่งไม่เหมือนกับมัลทิเซต (multiset) ที่อาจมีสมาชิกซ้ำกันก็ได้ การดำเนินการของเซตทั้งหมดยังรักษาคุณสมบัติที่ว่าสมาชิกแต่ละตัวของเซตต้องไม่ซ้ำกัน ส่วนการเรียงลำดับของสมาชิกของเซตนั้นไม่มีความสำคัญ ซึ่งต่างจากลำดับอนุกรมหรือคู่อันดับ
ถึงอย่างไรก็ตามเซตถือว่าเป็น อนิยาม ไม่มีนิยามที่ชัดเจนและครอบคลุม





วันอาทิตย์ที่ 11 มกราคม พ.ศ. 2558

ความสัมพันธ์และฟังก์ชัน


     คู่อันดับ (Order Pair) เป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่อันดับ a, b จะเขียนแทนด้วย (a, b) เรียก a ว่าเป็ อ่านต่อ